
Virtualizing Open Access Networks
Pontus Sköldström, Anders Gavler, Viktor Nordell
Netlab, Acreo AB, Electrum 236, 16440 Kista, Sweden

Email: {ponsko,andgav,viknor}@acreo.se

Abstract—Existing network virtualization methods in Open-
Flow networks are lacking in many respects, especially when
applied in multi-tenant scenarios such as open access networks. In
this paper we investigate how OpenFlow can be used to simplify
the use and management of a shared network infrastructure in
open access networks. We then present initial ideas on how to
improve virtualization in OpenFlow networks by applying novel
methods to virtualize the forwarding plane itself.

I. INTRODUCTION

The open access business model is designed to reduce
the cost of establishing new networks, increase competition
and customer freedom, all by setting up a framework where
multiple organizations fairly share a network infrastructure.
This introduces a number of technological issues, some con-
cerning the management of the network, some concerning the
interaction between the shared network and existing networks
of the organizations involved.

OpenFlow is a technology that could solve some of these
issues; with some improvements it could become a carrier-
grade technology that gives involved organizations access to
Virtual Networks (VNs) on top of the shared infrastructure
while at the same time reducing the costs of introducing novel
services in the network.

The next two subsections will give a short background to
the open access business model and virtualization. The section
on OpenFlow will address a novel way of implementing a well
isolated virtualization system in open access networks.

A. The open access business model

The open access business model [1] has been an ongoing
development in countries like e.g. Sweden and the Netherlands
for over ten years, and in the last couple of years it has been
a hot topic on a larger scale as well [2] . The main focus has
been on the business model and not on the technical aspects
of a shared infrastructure platform.

The business model is based on a number of players active
in this market. From a network perspective the scope is home,
access, distribution, and to some extent the core network.
The different players are modelled as: 1) a residential or
business customer 2) the owner of passive network infrastruc-
tures, a passive infrastructure provider, 3) the owner of active
network infrastructures, an active infrastructure provider, 4)
an organization that can bring services into the network,
a service provider (SP), and finally 5) a communications
operator which is an entity that acts between the customer,
the active infrastructure provider, and the service providers.
Figure 1 show some of the possible combinations of this -

from an open to a more vertically integrated model. A fully
vertically integrated business model is when one organization
holds all roles from 2 through 5. The open access business
model has up till now mainly attracted smaller players and
not e.g. large incumbent operators. This is currently changing
as [2] is indicating.

S
P

AIP

S
P

S
P

PIP

CO

S
P

S
P

S
P

PIP

CO

AIP
&

S
P

S
P

S
P

CO

AIP
&

PIP
&

CO 

AIP

&

PIP

&

SP

&

V
e
rt

ic
a
lly

 
in

te
g

ra
te

d

Fig. 1. Some constellations in the open access business model, from least
to most integrated. The four operating roles can be seen, Service Providers
(SP), Communications Operators (CO), and Active and Passive Infrastructure
Providers (AIP and PIP).

As a model it has its short comings, some business related
and some technical in nature. Incumbent operators commonly
mention that the model leads to too high competition, too
small customer slice, the “black box” problem of delivering
services over another operator’s network, and data and control
and management plane transparency (e.g. freedom in use of
protocols and addresses) . The first two are mainly business
related and will not be discussed here.

The black box problem refers to the issue of end-user
service support in open access networks which is handled
by the service provider, but the service provider has much
less visibility and control of the access network in an open
access model than if the service provider owned the access
network themselves (i.e. in a vertical business model). If the
communications operator cannot provide troubleshooting tools
to a service provider, it can lead to high support costs which
in turn have a high effect on revenue.

Data, control and management plane transparency refers
to that an SP should be able to use resource from the network
in a transparent manner. An SP should be able to utilize e.g.
the entire VLAN (Virtual LAN) or IP address-space without
coordinating with other SPs as well as having the freedom of
running whatever routing protocol, OAM (Operations, Admin-
istration, and Maintenance) protocol or application protocol
it wants in the network. All this should be possible while
still forwarding traffic in a secure and efficient way, without
the possibility of affecting other SPs (e.g. fully separate QoS



handling) or getting access to the other SPs traffic or network
state.

There are of course service providers that do not want
additional control. An example of this could be an IPTV
service provider that is only interested in running an IPTV
source and reaching to as many customers as possible without
worrying too much about how the service is transported.

We believe that split architectures (i.e. separation of data,
and control and management planes) together with virtual-
ization is a promising way forward, OpenFlow is inherently a
split architecture and could likely be extended to support strict
enough virtualization.

B. Virtualization

With the rising popularity of virtualization in the operating
system realm many have started to look at virtualization in
networks with a more integrated view than what existing
techniques offer. Existing techniques such as VLANs and
Virtual Routing and Forwarding (VRF) allows the creation
of logical topologies on top of physical networks in layer
2 and layer 3 respectively. Different kinds of Virtual Private
Networks (VPNs) can be used to create virtual links or even
virtual multipoint-to-multipoint connections. The paper [3]
looks at the existing techniques and derives a number of
architectural principles and design goals that should be met
in order to merge and extend these techniques into a network
virtualization environment capable of not only subdividing
existing topologies or create virtual links but rather create
Virtual Networks (VNs) (see figure 2). The goals and principles
most relevant to the open access model are:

• Flexibility Guest networks should be able to implement
arbitrary topologies, routing and forwarding functionality.

• Isolation Guest networks must be isolated from each to
improve fault-tolerance, security, and privacy. We also
include reservations in this concept, e.g. enforcing that
guest networks do not use more bandwidth than agreed.

• Programmability Network nodes should be pro-
grammable in order to ensure flexibility, this is a way to
implement e.g. customized routing protocols in the guest
networks.

A network virtualization environment conforming to these
points could prove very useful in an open access network. Not
only can it provide a means to separate traffic from different
providers but solve the open access problems listed earlier;
different VNs can run different software (programmability)
and act on different layers (flexibility), while not affecting
each other (isolation).

In the next section we are addressing these aspects through
a suggested implementation in an OpenFlow environment.

II. OPENFLOW

An OpenFlow-enabled switch exposes an interface to the
built-in forwarding tables which can be accessed by a Con-
troller through the OpenFlow protocol. The controller can
insert Match→Action rules in a so called FlowTable [4] in
order to establish per flow based forwarding or manipulation.

Active
Infrastructure 
Provider

Service Provider 1

Service 
Provider 2

Virtual Network 1

Virtual Network 2

Physical network

End-users

Fig. 2. Network virtualization environment hosting two virtual networks,
each operated by different Service Providers.

A rule may match on a 15-tuple consisting of protocol header
fields from the physical layer to the transport layer, e.g.
incoming port, Ethernet addresses, MPLS labels, and TCP
port numbers [5]. When a packet matches a particular rule
a number of actions can be performed on the packet, e.g.
modifying an address field and then transmitting the packet on
physical a port. If a packet does not match any of the installed
rules the packet is sent to the Controller for analysis. Based
on the contents the Controller may e.g. insert a new rule or
send the packet to a physical port. If an incoming packet does
not match any installed rules it is sent to the controller for
further analysis, this is a key feature for providing (limited)
programmability in OpenFlow networks.

The latest OpenFlow version (v1.1) strings multiple FlowTa-
bles together to form a processing pipeline that can be used to
perform more complicated operation then what was possible
earlier (see figure 3). Multiple lookups and actions makes it
possible to for instance use one table to decapsulate a packet
from a tunnel and in the next table process packets transported
in the tunnel (for details on the processing pipeline see [5]).

Table
0

Table
1

Table
n

Packet Execute
Action

Set

Packet
In

Action
SetAction

Set = {}

OpenFlow Switch

Packet
Out...

Ingress
port

Packet +
ingress port +

metadata

Action
Set

Fig. 3. Basic processing pipeline of OpenFlow 1.1. A packet can traverse
multiple FlowTables and Actions can be executed during traversal or at the
end of the pipe using the Action-Set. Some information are carried between
tables, for example the original incoming port number.

A Controller typically provides a framework allowing a
network application to interact with the connected switches.
In the popular open-source controller NOX [6] a network
application registers for certain events, for example to receive
packets sent to the Controller. This modular approach makes
it easy to extend and upgrade the network. For example,when
doing IP Multicast one can deploy IGMP snooping (listening
to IGMP messages on switches) in order to reduce the amount
of broadcast traffic on Layer 2. In NOX this could be imple-
mented by an application that traps IGMP traffic, performs the



snooping and creates FlowTable entries, and then retransmits
the IGMP message, without any changes to the switches.

The next sub-sections discuss different virtualization tech-
niques, which provide flexibility to the OpenFlow system, and
some of their problems.

A. Proxy-based virtualization

FlowVisor is an existing method for virtualizing Open-
Flow networks, essentially by limiting a Controllers view
of the physical topology. The FlowVisor proxies connections
between multiple Controllers and forwarding elements and
imposes restrictions on the communication based on pre-
defined policies. For example one Controller can be given
control over a part of the total 15-tuple address-space such
as the VLAN range 100 to 200. If the Controller tries to
send a command that affects a flow outside of this range the
FlowVisor will reject it, i.e. not forward the command to a
switch and instead return an error to the Controller.

A problem with this solution is the lack of isolation at the
data plane level. While the FlowVisor can prevent Controllers
from directly affecting each others network views there is no
(good) mechanism to enforce isolation of the actual traffic, its
difficult to prevent one SP to consume the entire bandwidth
of a link. Another issue is more subtle and more of a man-
agement issue and that is how the different address-spaces are
subdivided. To simplify management of the different network
views they should all be defined based on the same part of
the 15-tuple, e.g. VLAN ranges, to make sure they do not
overlap. This reduces the flexibility of the system as part of
the headers has to be reserved to define the views and can
cause problems at the networks edge. For example VLAN #1
is typically used to contain management and routing traffic,
colliding VLANs from different SPs could be mapped into
their particular VLAN range through translation at the edges
but this quickly turns into a complicated network management
issue. These issues make the proxy-based solution a viable
alternative but unnecessarily inflexible and complicated to
implement in an open access scenario.

B. Encapsulation-based virtualization

Instead of differentiating traffic based on already existing
header values, as in the FlowVisor approach, one can use per-
hop encapsulation. In this approach multiple overlay networks
are established in the network by creating multiple tunnels on
all links between forwarding elements, where the forwarding
elements in turn treat packets differently depending on which
tunnel they arrived in. In OpenFlow this can roughly be
implemented by encapsulating packets with a per-VN MPLS
label at the ingress switch in the network, the label is later used
by the network to differentiate traffic of different VNs. When
an encapsulated packet enters a switch the first FlowTable
matches the VN-label, pops it, and forwards the packet to a
subset of the FlowTables that are assigned to one VN. Once the
packet has been processed, it is correctly encapsulated again
before the packet is allowed to leave the forwarding element
(see figure 4). We will refer to the first table, that separates

traffic onto the VN specific tables, as the demux-table and the
last table that reassigns the VN-labels as the mux-table. In
[7] they describe a similar method in an OpenFlow context,
however without going into details on how it is actually
implemented.

The encapsulation based approach allows an SP full use of
its set of FlowTables, it can modify any header fields without
reduced flexibility. Next section identifies a number of possible
solutions of how to implementing this approach.

OpenFlow Switch

...

...

Service provider 1

Service provider 2

Network
Operator

Network
Operator

Table
1

Table
2

Table
n

Table
n+1

Table
n+2

Table
2n

Packet
In

Packet
OutTable

N

1 2 3

Table
0

Fig. 4. Using two tables for demultiplexing/multiplexing traffic belonging
to different VNs. [1] Matching and popping a VN MPLS label, [2] sending
the packet through a VN pipeline, [3] pushing the label back on.

III. ENCAPSULATION-BASED VIRTUALIZATION SOLUTIONS

We have identified three different ways of implementing
this model in OpenFlow 1.1 by adding minimal features to
the protocol and/or adding restrictions to the available actions
in the processing pipeline.

1) Explicit mux-table via Metadata In this approach we
reserve two network provider tables, one for demultiplexing
incoming packets and one for multiplexing outgoing traffic.
There is also a number of tables reserved for each VN, into
which the packets are demultiplexed from the first table. We
then reserve part of the metadata and metadata mask fields
which we use to keep track of either which table the packet
last visited or which VN it belongs to. When the packets hit
the last table, the multiplex-table, the combination of metadata
and EtherType is used to push the correct VN label back
on again. To ensure correct operations we’d have to make
sure that all packets pass through the multiplex-table, this
can be done by adding restrictions to the Output action. By
replacing any output actions with an instruction to go to the
multiplex table and putting the Output action in the Action-Set
we can enforce that all packets traverse the mux-table before
leaving the switch. Replacing actions could be handled by an
external proxy like the FlowVisor, or be behaviour built-in to
the switch.

This method may be unnecessarily expensive however,
primarily since it requires one extra table lookup (compared
to following methods).

2) Implicit mux-table via proxy Another method is to im-
plement the multiplex-table implicitly by examining the rules
that are installed by the service providers and transparently
insert actions that push the VN label back where appropriate.



This would typically be if there’s no Goto-table instruction or
if there is an Output action since those would terminate the
processing pipeline. However, we cannot simply insert a push
MPLS label action directly since there may be other MPLS
actions in the Action-Set, either we have to restrict the use
of the Action-Set (no MPLS operations) or introduce a new
instruction that executes the Action-Set and then lets us push
the VN label.

This method, while restricting the use of the Action-Set,
seems to be quite light-weight in implementation and the
amount of new features needed.

3) Implicit mux-table via Action-Set A third way to
implement the mux-table implicitly would be by letting the
first table add an push MPLS label action to the Action-Set.
Since the Action-Set is executed at the end of the pipeline
the network operator can enforce that the correct label is put
back once the packet leaves the switch. However, one would
have to modify the pipeline rules to restricts the use of the
Action-Set in the VN specific FlowTables by first disallowing
the use of MPLS related actions in the action set, and by not
allowing use of the Clear-Actions instruction (which empties
the Action-Set).

This method seems to be the least intrusive, only introducing
few restrictions on the Action-Set processing.

There three solutions all share a problem concerning how
MPLS labeling affects the EtherType. When a MPLS label
is pushed onto an Ethernet frame the existing EtherType
is replaced with the MPLS EtherType. The content of the
Ethernet frame can then no longer be inferred from the
EtherType but has to be associated to the Label Switched
Path (LSP) itself in order to restore the original EtherType
at the LSP egress. This complicates our virtualization model
by requiring us to have multiple labels per VN, one for each
EtherType that is used by the VN. In practice this is probably
not a problem, typically the number of different EtherTypes
is relatively low, so the number of required extra FlowTable
entries is probably not large.

IV. ISOLATION ISSUES

While we have solved the basic isolation by providing
something similar to VRF on the OpenFlow level, there are
still many ways the VNs can interfere with each other e.g.
through bandwidth use on the switch as well as on the control
channel(s), switch CPU usage for example through Vendor
extensions (non-standard OpenFlow extensions). While these
are all related to consuming to much of some kind of resource
another isolation issue is FlowTable privacy, one SP should
not be able to read the contents, or statistics, of another
SPs FlowTable.Most of these issues are addressed in [8],
and similar solutions can be applied in our case. We will
however elaborate on the bandwidth isolation problem. In [8]
they addressed this issue by mapping traffic to VLAN priority
classes, which results in a quite coarse and limited way of
isolating bandwidth shares. It also requires that packets are
modified as they traverse the network, something we wish to
avoid. A more flexible way is proposed in [9], this proposal

adds the ability to create fine tuned rate-limiters that can e.g.
be applied to traffic on flows going through the switch or sent
by the switch to the controller(s) by a new Action. In our case
this could be utilized by creating per-VN rate-limiters that are
executed in the demux-table, thus limiting the amount of traffic
allowed to pass through a switch on a per-VN basis. Similarly
traffic going to the different controllers can be limited to avoid
starvation.

V. CONCLUSIONS

We have presented initial ideas on how to improve forward-
ing plane virtualization in OpenFlow through minor modifi-
cations in a way that both increases isolation and improves
flexibility. We believe that flexible virtualization combined
with other OpenFlow features, such as the ability of running
different applications per VN, makes an improved OpenFlow
a good candidate for a network adapted to some of the needs
of the open access business model.

As future work we are planning to prototype one of the
solutions and compare it to existing solutions. For example,
these solutions should add less latency to the control channel
compared to e.g. FlowVisor but they add extra FlowTable
lookup(s) and the encapsulation/decapsulation of packets per
hop. This probably introduces extra latency in the forwarding
path, which has to be weighted against the added benefits.

We also plan to investigate how many different EtherTypes
that are actually in use in typical open access networks, in
order to reduce the amount of FlowTable entries it may be
worth to move to a different encapsulation format.

ACKNOWLEDGMENT

This work was supported by the European Commission
through the SPARC and OASE projects.

REFERENCES

[1] M. Forzati, C. Larsen, and C. Mattsson, “Open access networks, the
Swedish experience,” in Transparent Optical Networks (ICTON), 2010
12th International Conference on. IEEE, 2010, pp. 1–4.

[2] T. M. Dirk Breuer, “Research Questions in the Business Case of FTTH.”
[Online]. Available: http://www.ecoc2010.org/contents/attached/c20/WS
7 Breuer.pdf

[3] N. Chowdhury and R. Boutaba, “Network virtualization: state of the
art and research challenges,” Communications Magazine, IEEE, vol. 47,
no. 7, pp. 20–26, 2009. [Online]. Available: http://www.mosharaf.com/
wp-content/uploads/nv-overview-commag09.pdf

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[5] O. S. Consortium, “OpenFlow Switch Specification v1.1.0,” 2011.
[6] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and

S. Shenker, “NOX: towards an operating system for networks,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 3, pp. 105–
110, 2008. [Online]. Available: http://noxrepo.org/doc/nox-ccr-final.pdf

[7] M. Casado, T. Koponen, R. Ramanathan, and S. Shenker, “Virtualizing
the network forwarding plane,” in Proceedings of the Workshop on
Programmable Routers for Extensible Services of Tomorrow. ACM,
2010, p. 8.

[8] R. Sherwood, G. Gibb, K. Yap, G. Appenzeller, M. Casado, N. McKeown,
and G. Parulkar, “Flowvisor: A network virtualization layer,” Stanford
University, Tech. Rep., 2009. [Online]. Available: http://www.openflow.
org/downloads/technicalreports/openflow-tr-2009-1-flowvisor.pdf

[9] J. Tourrilhes, “Rate Limiter Proposal,” Retrieved April 18, 2011, from
http://www.openflow.org/wk/index.php/Rate Limiter Proposal.


